Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2312704

RESUMO

The binding properties of synthetic and recombinant peptides derived from N-terminal part of ACE2, the main receptor for SARS-CoV-2, were evaluated. Additionally, the ability of these peptides to prevent virus entry in vitro was addressed using both pseudovirus particles decorated with the S protein, as well as through infection of Vero cells with live SARS-CoV-2 virus. Surprisingly, in spite of effective binding to S protein, all linear peptides of various lengths failed to neutralize the viral infection in vitro. However, the P1st peptide that was chemically "stapled" in order to stabilize its alpha-helical structure was able to interfere with virus entry into ACE2-expressing cells. Interestingly, this peptide also neutralized pseudovirus particles decorated with S protein derived from the Omicron BA.1 virus, in spite of variations in key amino acid residues contacting ACE2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Chlorocebus aethiops , Humanos , SARS-CoV-2/metabolismo , Células Vero , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica , Peptídeos/farmacologia , Peptídeos/metabolismo
2.
Antiviral Res ; 209: 105508, 2023 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2165063

RESUMO

Amphipathic nucleoside and non-nucleoside derivatives of pentacyclic aromatic hydrocarbon perylene are known as potent non-cytotoxic broad-spectrum antivirals. Here we report 3-methyl-5-(perylen-3-ylethynyl)-uracil-1-acetic acid and its amides, a new series of compounds based on a 5-(perylen-3-ylethynyl)-uracil scaffold. The compounds demonstrate pronounced in vitro activity against arthropod-borne viruses, namely tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV), in plaque reduction assays with EC50 values below 1.9 and 1.3 nM, respectively, and Chikungunya virus (CHIKV) in cytopathic effect inhibition test with EC50 values below 3.2 µM. The compounds are active against respiratory viruses as well: severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in cytopathic effect inhibition test and influenza A virus (IAV) in virus titer reduction experiments are inhibited - EC50 values below 51 nM and 2.2 µM, respectively. The activity stems from the presence of a hydrophobic perylene core, and all of the synthesized compounds exhibit comparable 1O2 generation rates. Nonetheless, activity can vary by orders of magnitude depending on the hydrophilic part of the molecule, suggesting a complex mode of action. A time-of-addition experiment and fluorescent imaging indicate that the compounds inhibit viral fusion in a dose-dependent manner. The localization of the compound in the lipid bilayers and visible damage to the viral envelope suggest the membrane as the primary target. Dramatic reduction of antiviral activity with limited irradiation or under treatment with antioxidants further cements the idea of photoinduced ROS-mediated viral envelope damage being the mode of antiviral action.


Assuntos
COVID-19 , Perileno , Humanos , Antivirais/farmacologia , Antivirais/química , Uracila/farmacologia , Perileno/farmacologia , SARS-CoV-2
3.
Biomolecules ; 12(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2099331

RESUMO

Rose Bengal (RB) is an anionic xanthene dye with multiple useful biological features, including photosensitization properties. RB was studied extensively as a photosensitizer, mostly for antibacterial and antitumor photodynamic therapy (PDT). The application of RB to virus inactivation is rather understudied, and no RB derivatives have been developed as antivirals. In this work, we used a synthetic approach based on a successful design of photosensitizing antivirals to produce RB derivatives for virus photoinactivation. A series of n-alkyl-substituted RB derivatives was synthesized and evaluated as antiviral photosensitizers. The compounds exhibited similar 1O2 generation rate and efficiency, but drastically different activities against SARS-CoV-2, CHIKV, and HIV; with comparable cytotoxicity for different cell lines. Submicromolar-to-subnanomolar activities and high selectivity indices were detected for compounds with C4-6 alkyl (SARS-CoV-2) and C6-8 alkyl (CHIKV) chains. Spectrophotometric assessment demonstrates low aqueous solubility for C8-10 congeners and a significant aggregation tendency for the C12 derivative, possibly influencing its antiviral efficacy. Initial evaluation of the synthesized compounds makes them promising for further study as viral inactivators for vaccine preparations.


Assuntos
Tratamento Farmacológico da COVID-19 , Rosa Bengala , Humanos , Rosa Bengala/farmacologia , Rosa Bengala/química , SARS-CoV-2 , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Antivirais/farmacologia
4.
Biochemistry (Mosc) ; 87(7): 590-604, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: covidwho-2053145

RESUMO

Peptides are widely used for the diagnostics, prevention, and therapy of certain human diseases. How useful can they be for the disease caused by the SARS-CoV-2 coronavirus? In this review, we discuss the possibility of using synthetic and recombinant peptides and polypeptides for prevention of COVID-19 via blocking the interaction between the virus and its main receptor ACE2, as well as components of antiviral vaccines, in particular, against new emerging virus variants.


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2 , Antivirais/uso terapêutico , Humanos , Peptídeos/uso terapêutico , SARS-CoV-2
5.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: covidwho-2043900

RESUMO

Perylene-based compounds are attracting significant attention due to their high broad-spectrum antiviral activity against enveloped viruses. Despite unambiguous results of in vitro studies and high selectivity index, the poor water solubility of these compounds prevented in vivo evaluation of their antiviral properties. In this work, we synthesized a series of compounds with a perylene pharmacophore bearing positively charged substituents to improve the aqueous solubility of this unique type of antivirals. Three types of charged groups were introduced: (1) quaternary morpholinium salts (3a-b); (2) a 2'-O-l-valinyl-uridine hydrochloride residue (8), and (3) a 3-methylbenzothiazolium cation (10). The synthesized compounds were evaluated based both on antiviral properties in vitro (CHIKV, SARS-CoV-2, and IAV) and on solubility in aqueous media. Compound 10 has the greatest aqueous solubility, making it preferable for pre-evaluation by intragastrical administration in a mouse model of lethal influenza pneumonia. The results indicate that the introduction of a positively charged group is a viable strategy for the design of drug candidates with a perylene scaffold for in vivo studies.

6.
ChemMedChem ; 17(20): e202200382, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: covidwho-2013440

RESUMO

Nucleic acid-based detection of RNA viruses requires an annealing procedure to obtain RNA/probe or RNA/primer complexes for unwinding stable structures of folded viral RNA. In this study, we designed a protein-enzyme-free nano-construction, named four-armed DNA machine (4DNM), that requires neither an amplification stage nor a high-temperature annealing step for SARS-CoV-2 detection. It uses a binary deoxyribozyme (BiDz) sensor incorporated in a DNA nanostructure equipped with a total of four RNA-binding arms. Additional arms were found to improve the limit of detection at least 10-fold. The sensor distinguished SARS-CoV-2 from other respiratory viruses and correctly identified five positive and six negative clinical samples verified by quantitative polymerase chain reaction (RT-qPCR). The strategy reported here can be used for the detection of long natural RNA and can become a basis for a point-of-care or home diagnostic test.


Assuntos
COVID-19 , DNA Catalítico , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real
7.
Vaccines (Basel) ; 10(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1911695

RESUMO

Various types of COVID-19 vaccines, including adenovirus, mRNA, and inactivated ones, have been developed and approved for clinical use worldwide. Inactivated vaccines are produced using a proven technology that is widely used for the production of vaccines for the prevention and control of infectious diseases, including influenza and poliomyelitis. The development of inactivated whole-virion vaccines commonly includes several stages: the production of cellular and viral biomass in cell culture; inactivation of the virus; filtration and ultrafiltration; chromatographic purification of the viral antigen; and formulation with stabilizers and adjuvants. In this study, the suitability of four resins for Size-Exclusion Chromatography was investigated for the purification of a viral antigen for the human COVID-19 vaccine.

8.
Front Immunol ; 13: 907341, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1903029

RESUMO

Background: Effective response to emerging pandemic threats is complicated by the need to develop specific vaccines and other medical products. The availability of broadly specific countermeasures that could be deployed early in the pandemic could significantly alter its course and save countless lives. Live attenuated vaccines (LAVs) were shown to induce non-specific protection against a broad spectrum of off-target pathogens by stimulating innate immune responses. The purpose of this study was to evaluate the effect of immunization with bivalent Oral Poliovirus Vaccine (bOPV) on the incidence of COVID-19 and other acute respiratory infections (ARIs). Methods and Findings: A randomized parallel-group comparative study was conducted in Kirov Medical University. 1115 healthy volunteers aged 18 to 65 were randomized into two equal groups, one of which was immunized orally with a single dose of bOPV "BiVac Polio" and another with placebo. The study participants were monitored for three months for respiratory illnesses including COVID-19. The endpoint was the incidence of acute respiratory infections and laboratory confirmed COVID-19 in both groups during 3 months after immunization. The number of laboratory-confirmed cases of COVID-19 was significantly lower in the vaccinated group than in placebo (25 cases vs. 44, p=0.036). The difference between the overall number of clinically diagnosed respiratory illnesses in the two groups was not statistically significant. Conclusions: Immunization with bOPV reduced the number of laboratory-confirmed COVID-19 cases, consistent with the original hypothesis that LAVs induce non-specific protection against off-target infections. The findings are in line with previous observations of the protective effects of OPV against seasonal influenza and other viral and bacterial pathogens. The absence of a statistically significant effect on the total number of ARIs may be due to the insufficient number of participants and heterogeneous etiology of ARIs. OPV could be used to complement specific coronavirus vaccines, especially in regions of the world where the vaccines are unavailable, and as a stopgap measure for urgent response to future emerging infections. Clinical trial registration number NCT05083039 at clinicaltrals.gov https://clinicaltrials.gov/ct2/show/NCT05083039?term=NCT05083039&draw=2&rank=1.


Assuntos
COVID-19 , Poliomielite , Infecções Respiratórias , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Incidência , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Vacina Antipólio Oral , Vacinação/métodos
9.
Front Pharmacol ; 12: 773198, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1581231

RESUMO

The design of effective target-specific drugs for COVID-19 treatment has become an intriguing challenge for modern science. The SARS-CoV-2 main protease, Mpro, responsible for the processing of SARS-CoV-2 polyproteins and production of individual components of viral replication machinery, is an attractive candidate target for drug discovery. Specific Mpro inhibitors have turned out to be promising anticoronaviral agents. Thus, an effective platform for quantitative screening of Mpro-targeting molecules is urgently needed. Here, we propose a pre-steady-state kinetic analysis of the interaction of Mpro with inhibitors as a basis for such a platform. We examined the kinetic mechanism of peptide substrate binding and cleavage by wild-type Mpro and by its catalytically inactive mutant C145A. The enzyme induces conformational changes of the peptide during the reaction. The inhibition of Mpro by boceprevir, telaprevir, GC-376, PF-00835231, or thimerosal was investigated. Detailed pre-steady-state kinetics of the interaction of the wild-type enzyme with the most potent inhibitor, PF-00835231, revealed a two-step binding mechanism, followed by covalent complex formation. The C145A Mpro mutant interacts with PF-00835231 approximately 100-fold less effectively. Nevertheless, the binding constant of PF-00835231 toward C145A Mpro is still good enough to inhibit the enzyme. Therefore, our results suggest that even noncovalent inhibitor binding due to a fine conformational fit into the active site is sufficient for efficient inhibition. A structure-based virtual screening and a subsequent detailed assessment of inhibition efficacy allowed us to select two compounds as promising noncovalent inhibitor leads of SARS-CoV-2 Mpro.

10.
Int J Infect Dis ; 116: 331-338, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-1587610

RESUMO

OBJECTIVES: This study aimed to estimate the impact of the COVID-19 pandemic on the circulation of non-SARS-CoV-2 respiratory viruses and the clinical characteristics of COVID-19 in hospitalized children. METHODS: A total of 226 and 864 children admitted to the Children's City Clinical Hospital with acute respiratory infection in September to November of 2018 and 2020 in Moscow were tested for respiratory viruses using multiplex polymerase chain reaction (PCR) and Mycoplasma pneumoniae/Chlamydia pneumoniae using enzyme-linked immunosorbent assay. RESULTS: The detection rate of non-SARS-CoV-2 viruses in 2020 was lower than in 2018, 16.9% versus 37.6%. An increase in the median age of children with respiratory viruses was observed during the pandemic (3 years vs 1 year). There was no significant difference in the frequency of intensive care unit (ICU) admission in children with SARS-CoV-2 and other respiratory virus infections (2.7% vs 2.9%). SARS-CoV-2 and human rhinoviruses, human metapneumoviruses, and human adenoviruses showed significantly lower than expected co-detection rates during co-circulation. An increase in body mass index (BMI) or bacterial coinfection leads to an increased risk of ICU admission and a longer duration of COVID-19 in children. CONCLUSIONS: The COVID-19 pandemic led to significant changes in the epidemiological characteristics of non-SARS-CoV-2 respiratory viruses during the autumn peak of the 2020 pandemic, compared with the same period in 2018.


Assuntos
Adenovírus Humanos , COVID-19 , Coinfecção , COVID-19/epidemiologia , Criança , Pré-Escolar , Humanos , Moscou/epidemiologia , Pandemias , SARS-CoV-2
11.
Microscopy Research and Technique ; n/a(n/a), 2021.
Artigo em Inglês | Wiley | ID: covidwho-1410334

RESUMO

Abstract The severe COVID-19 pandemic drives the research toward the SARS-CoV-2 virion structure and the possible therapies against it. Here, we characterized the ?-propiolactone inactivated SARS-CoV-2 virions using transmission electron microscopy (TEM) and atomic force microscopy (AFM). We compared the SARS-CoV-2 samples purified by two consecutive chromatographic procedures (size exclusion chromatography [SEC], followed by ion-exchange chromatography [IEC]) with samples purified by ultracentrifugation. The samples prepared using SEC and IEC retained more spikes on the surface than the ones prepared using ultracentrifugation, as confirmed by TEM and AFM. TEM showed that the spike (S) proteins were in the pre-fusion conformation. Notably, the S proteins could be recognized by specific monoclonal antibodies. Analytical TEM showed that the inactivated virions retained nucleic acid. Altogether, we demonstrated that the inactivated SARS-CoV-2 virions retain the structural features of native viruses and provide a prospective vaccine candidate.

12.
Molecules ; 26(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1383891

RESUMO

This paper reports the synthesis of branched alkylene guanidines using microfluidic technologies. We describe the preparation of guanidine derivatives at lower temperatures, and with significantly less time than that required in the previously applicable method. Furthermore, the use of microfluidics allows the attainment of high-purity products with a low residual monomer content, which can expand the range of applications of this class of compounds. For all the samples obtained, the molecular-weight characteristics are calculated, based on which the optimal condensation conditions are established. Additionally, in this work, the antiviral activity of the alkylene guanidine salt against the SARS-CoV-2 virus is confirmed.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Guanidinas/síntese química , Guanidinas/farmacologia , Microfluídica/métodos , SARS-CoV-2/efeitos dos fármacos , Animais , COVID-19 , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Chlorocebus aethiops , Concentração Inibidora 50 , Espectrometria de Massas por Ionização por Electrospray , Células Vero
13.
Emerg Microbes Infect ; 10(1): 1790-1806, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1370760

RESUMO

The unprecedented in recent history global COVID-19 pandemic urged the implementation of all existing vaccine platforms to ensure the availability of the vaccines against COVID-19 to every country in the world. Despite the multitude of high-quality papers describing clinical trials of different vaccine products, basic detailed data on general toxicity, reproductive toxicity, immunogenicity, protective efficacy and durability of immune response in animal models are scarce. Here, we developed a ß-propiolactone-inactivated whole virion vaccine CoviVac and assessed its safety, protective efficacy, immunogenicity and stability of the immune response in rodents and non-human primates. The vaccine showed no signs of acute/chronic, reproductive, embryo- and fetotoxicity, or teratogenic effects, as well as no allergenic properties in studied animal species. The vaccine induced stable and robust humoral immune response both in form of specific anti-SARS-CoV-2 IgG and NAbs in mice, Syrian hamsters, and common marmosets. The NAb levels did not decrease significantly over the course of one year. The course of two immunizations protected Syrian hamsters from severe pneumonia upon intranasal challenge with the live virus. Robustness of the vaccine manufacturing process was demonstrated as well. These data encouraged further evaluation of CoviVac in clinical trials.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunidade Humoral , SARS-CoV-2/imunologia , Vacinas de Produtos Inativados/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Callithrix , Cricetinae , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Cobaias , Humanos , Imunogenicidade da Vacina , Imunoglobulina G/imunologia , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Wistar , SARS-CoV-2/genética , Fatores de Tempo , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos
14.
Eur J Med Chem ; 220: 113467, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1184952

RESUMO

Emerging and re-emerging viruses periodically cause outbreaks and epidemics all over the world, eventually leading to global events such as the current pandemic of the novel SARS-CoV-2 coronavirus infection COVID-19. Therefore, an urgent need for novel antivirals is crystal clear. Here we present the synthesis and evaluation of an antiviral activity of phenoxazine-based nucleoside analogs divided into three groups: (1) 8-alkoxy-substituted, (2) acyclic, and (3) carbocyclic. The antiviral activity was assessed against a structurally and phylogenetically diverse panel of RNA and DNA viruses from 25 species. Four compounds (11a-c, 12c) inhibited 4 DNA/RNA viruses with EC50 ≤ 20 µM. Toxicity of the compounds for the cell lines used for virus cultivation was negligible in most cases. In addition, previously reported and newly synthesized phenoxazine derivatives were evaluated against SARS-CoV-2, and some of them showed promising inhibition of reproduction with EC50 values in low micromolar range, although accompanied by commensurate cytotoxicity.


Assuntos
Antivirais/farmacologia , Vírus de DNA/efeitos dos fármacos , Nucleosídeos/farmacologia , Oxazinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/toxicidade , Linhagem Celular Tumoral , Chlorocebus aethiops , Cães , Humanos , Células Madin Darby de Rim Canino , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/toxicidade , Oxazinas/síntese química , Oxazinas/toxicidade , Relação Estrutura-Atividade , Células Vero , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA